Data items in the AUDIT_CONFORM category describe the dictionary versions against which the data names appearing in the current data block are conformant. Example 1 - any file conforming to the current CIF core dictionary. <mmcif_sas:audit_conformCategory> <mmcif_sas:audit_conform dict_name="mmcif_sas.dic" dict_version="1.2.3"> <mmcif_sas:dict_location>http://mmcif.wwpdb.org/dictionaries/ascii/mmcif_sas_v123.dic</mmcif_sas:dict_location> </mmcif_sas:audit_conform> </mmcif_sas:audit_conformCategory> A file name or uniform resource locator (URL) for the dictionary to which the current data block conforms. The string identifying the highest-level dictionary defining data names used in this file. The version number of the dictionary to which the current data block conforms. Data items in the ENTITY category record details (such as chemical composition, name and source) about the molecular entities that are present in the crystallographic structure. Items in the various ENTITY subcategories provide a full chemical description of these molecular entities. Entities are of three types: polymer, non-polymer and water. Note that the water category includes only water; ordered solvent such as sulfate ion or acetone would be described as individual non-polymer entities. The ENTITY category is specific to macromolecular CIF applications and replaces the function of the CHEMICAL category in the CIF core. It is important to remember that the ENTITY data are not the result of the crystallographic experiment; those results are represented by the ATOM_SITE data items. ENTITY data items describe the chemistry of the molecules under investigation and can most usefully be thought of as the ideal groups to which the structure is restrained or constrained during refinement. It is also important to remember that entities do not correspond directly to the enumeration of the contents of the asymmetric unit. Entities are described only once, even in those structures that contain multiple observations of an entity. The STRUCT_ASYM data items, which reference the entity list, describe and label the contents of the asymmetric unit. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmcif_sas:entityCategory> <mmcif_sas:entity id="1"> <mmcif_sas:details> The enzymatically competent form of HIV protease is a dimer. This entity corresponds to one monomer of an active dimer.</mmcif_sas:details> <mmcif_sas:formula_weight>10916</mmcif_sas:formula_weight> <mmcif_sas:type>polymer</mmcif_sas:type> </mmcif_sas:entity> <mmcif_sas:entity id="2"> <mmcif_sas:details xsi:nil="true" /> <mmcif_sas:formula_weight>762</mmcif_sas:formula_weight> <mmcif_sas:type>non-polymer</mmcif_sas:type> </mmcif_sas:entity> <mmcif_sas:entity id="3"> <mmcif_sas:details xsi:nil="true" /> <mmcif_sas:formula_weight>18</mmcif_sas:formula_weight> <mmcif_sas:type>water</mmcif_sas:type> </mmcif_sas:entity> </mmcif_sas:entityCategory> A description of special aspects of the entity. Formula mass in daltons of the entity. The method by which the sample for the entity was produced. Entities isolated directly from natural sources (tissues, soil samples etc.) are expected to have further information in the ENTITY_SRC_NAT category. Entities isolated from genetically manipulated sources are expected to have further information in the ENTITY_SRC_GEN category. Defines the type of the entity. Polymer entities are expected to have corresponding ENTITY_POLY and associated entries. Non-polymer entities are expected to have corresponding CHEM_COMP and associated entries. Water entities are not expected to have corresponding entries in the ENTITY category. The value of attribute id in category entity must uniquely identify a record in the ENTITY list. Note that this item need not be a number; it can be any unique identifier. Lists the author(s) of the SAS data Example showing SAS responsible author <mmcif_sas:sas_authorCategory> <mmcif_sas:sas_author id="1"> <mmcif_sas:name>Bloggs,</mmcif_sas:name> <mmcif_sas:orcid>0000-0001-0002-0003</mmcif_sas:orcid> <mmcif_sas:result_id>1</mmcif_sas:result_id> </mmcif_sas:sas_author> </mmcif_sas:sas_authorCategory> Name of the person Unique global ID for the author, based on the ORCID system Result for which this author is responsible Role that the author played in the generation of the data and writing of accompanying articles Unique ID for the sas_author entry Items in this category give information about the beam. Example - Hypothetical example to illustrate the description of a beam geometry. <mmcif_sas:sas_beamCategory> <mmcif_sas:sas_beam id="X_ray"> <mmcif_sas:shape>Rectangular</mmcif_sas:shape> </mmcif_sas:sas_beam> </mmcif_sas:sas_beamCategory> Frequency of the choppers in Hz The width of the collimation slits in the _x direction The width of the collimation slits in the _y direction the distance in millimetres from the monochromator to the specimen The distance in millimetres from the radiation source to the monochromator. For synchrotron radiation, the source is a bending magnet or insertion device. the distance in millimetres from the source to the sample For synchrotron radiation, the source is a bending magnet or insertion device. The beam divergence in the _x direction The beam divergence in the _y City where the beamline is located Hamburg Country where the beamline is located Germany Name of the beamline PETRA III P12 This is two times the Bragg angle (2 theta) of the monochromator. Direction of the polarization in degrees relative to the x axis The positive direction is counterclockwise when facing the source. A description of the device used to polarize the beam pulse duration for neutron time of flight measurements The wavelength of the incident beam in Angstroms. The halfwidth of the distribution of wavelengths present in the incident beam Shape of the beam profile if not rectangular, e.g., circular Type of source Synchrotron Angle between the rotation axis of the velocity selector and the primary beam direction. Rotation speed of the velocity selector in rpm The width of the beam at the sample in the _x direction The width of the beam at the sample in the_y direction The value of attribute id in category sas_beam must uniquely identify the beam setup used to measure the scattered intensities. Description of the buffer used in the sample Example 1 <mmcif_sas:sas_bufferCategory> <mmcif_sas:sas_buffer id="1"> <mmcif_sas:comment>Prepared on 03.10.14</mmcif_sas:comment> <mmcif_sas:name>HEPES</mmcif_sas:name> <mmcif_sas:pH>7.5</mmcif_sas:pH> </mmcif_sas:sas_buffer> </mmcif_sas:sas_bufferCategory> Volume fraction of D2O in the buffer in % Comments on the buffer Buffer name pH of the buffer Buffer identifier Gives information about the detector. Extension for the items used in SAS. Example - Hypothetical example to illustrate the description of a detector. <mmcif_sas:sas_detcCategory> <mmcif_sas:sas_detc id="2D"> <mmcif_sas:pixsize_x>0.01</mmcif_sas:pixsize_x> <mmcif_sas:pixsize_y>0.01</mmcif_sas:pixsize_y> <mmcif_sas:sector_orientation>22.5</mmcif_sas:sector_orientation> </mmcif_sas:sas_detc> </mmcif_sas:sas_detcCategory> The position of the beam center on the detector in _x direction in the detector coordinate system. The position of the beam center on the detector in _y direction. The axis system is given by attribute axis.id in category sas_detc. The x coordinate in pixels of the centre of the beamstop shadow on the detector measured using the detector coordinates. The y coordinate of the centre of the shadow of the beamstop on the detector measured in the detector coordinate system defines the maximum dimension of the beamstop shadow on the detector in the _x direction defines the maximum dimension of the beamstop shadow on the detector in the _y direction Shape of the beamstop (circular, rectangular etc) the distance in millimetres from the sample to the detector The number n of channels (pixels) merged together (1D-detector) to decrease the statistical error by a factor of SQRT(n). Name of the detector 2D Photon Counting defines the Euler alpha angle of the normal to the detector plane defines the Euler beta angle of the normal to the detector plane defines the Euler gamma angle of the normal to the detector plane The number of detector pixels in the x direction. The number of detector pixels in the y direction. The pixel size in mm in the x direction. The pixel size in mm in the y direction. The angular width of the binning sector of the 2D-detector: This is the angular coordinate of the binning sector in a 2D-detector It is the angle between the central line of the sector and the x direction The radial width of the binnng sector of the 2D-detector. Type of the detector MAR Image Plate The value of attribute id in category sas_detc must uniquely identify the detector used to measure the scattered intensities . Description of the fitted model Example 1 <mmcif_sas:sas_modelCategory> <mmcif_sas:sas_model id="1"> <mmcif_sas:comment>Clustered</mmcif_sas:comment> <mmcif_sas:fitting_id>1</mmcif_sas:fitting_id> <mmcif_sas:radius>1.3</mmcif_sas:radius> <mmcif_sas:software>DAMMIF</mmcif_sas:software> <mmcif_sas:symmetry>P1</mmcif_sas:symmetry> <mmcif_sas:type_of_model>dummy</mmcif_sas:type_of_model> <mmcif_sas:version>6.0</mmcif_sas:version> </mmcif_sas:sas_model> </mmcif_sas:sas_modelCategory> Comments on the model Clustered A pointer to _fitting_id of the model 1 Radius of dummy atoms in Angstroms (for ab initio models) 1.3 Software used to create the model DAMMIF Symmetry of the model P1 Type of the model dummy Version of software used 6.0 Model identifier 1 Model fitting data Example 1 <mmcif_sas:sas_model_fittingCategory> <mmcif_sas:sas_model_fitting ordinal="1"> <mmcif_sas:fit>27665.9</mmcif_sas:fit> <mmcif_sas:id>1</mmcif_sas:id> <mmcif_sas:intensity>10188.6</mmcif_sas:intensity> <mmcif_sas:momentum_transfer>0.0685743</mmcif_sas:momentum_transfer> </mmcif_sas:sas_model_fitting> <mmcif_sas:sas_model_fitting ordinal="2"> <mmcif_sas:fit>25913.1</mmcif_sas:fit> <mmcif_sas:id>1</mmcif_sas:id> <mmcif_sas:intensity>10275.7</mmcif_sas:intensity> <mmcif_sas:momentum_transfer>0.0712083</mmcif_sas:momentum_transfer> </mmcif_sas:sas_model_fitting> <mmcif_sas:sas_model_fitting ordinal="3"> <mmcif_sas:fit>24310.</mmcif_sas:fit> <mmcif_sas:id>1</mmcif_sas:id> <mmcif_sas:intensity>10285.1</mmcif_sas:intensity> <mmcif_sas:momentum_transfer>0.0738423</mmcif_sas:momentum_transfer> </mmcif_sas:sas_model_fitting> <mmcif_sas:sas_model_fitting ordinal="4"> <mmcif_sas:fit>22706.9</mmcif_sas:fit> <mmcif_sas:id>1</mmcif_sas:id> <mmcif_sas:intensity>10029.4</mmcif_sas:intensity> <mmcif_sas:momentum_transfer>0.0764763</mmcif_sas:momentum_transfer> </mmcif_sas:sas_model_fitting> </mmcif_sas:sas_model_fittingCategory> The theoretical scattering intensity Fit identifier 1 The scattering intensity used for fitting theoretical scattering Momentum transfer values Fit ordinal identifier 1 Model fitting details Example 1 <mmcif_sas:sas_model_fitting_detailsCategory> <mmcif_sas:sas_model_fitting_details id="1"> <mmcif_sas:chi_square>1.44</mmcif_sas:chi_square> <mmcif_sas:p-value>1.2</mmcif_sas:p-value> <mmcif_sas:result_id>1</mmcif_sas:result_id> <mmcif_sas:unit>nanometre</mmcif_sas:unit> </mmcif_sas:sas_model_fitting_details> </mmcif_sas:sas_model_fitting_detailsCategory> Chi square value p-value A pointer to _result_id corresponding to the fit Units of momentum transfer Fit identifier The distance distribution function P(R) Example 1 <mmcif_sas:sas_p_of_RCategory> <mmcif_sas:sas_p_of_R ordinal="1"> <mmcif_sas:P>0.</mmcif_sas:P> <mmcif_sas:P_error>0.</mmcif_sas:P_error> <mmcif_sas:R>0.</mmcif_sas:R> <mmcif_sas:id>1</mmcif_sas:id> </mmcif_sas:sas_p_of_R> <mmcif_sas:sas_p_of_R ordinal="2"> <mmcif_sas:P>2.276</mmcif_sas:P> <mmcif_sas:P_error>0.05545</mmcif_sas:P_error> <mmcif_sas:R>0.1034</mmcif_sas:R> <mmcif_sas:id>1</mmcif_sas:id> </mmcif_sas:sas_p_of_R> <mmcif_sas:sas_p_of_R ordinal="3"> <mmcif_sas:P>5.953</mmcif_sas:P> <mmcif_sas:P_error>0.08992</mmcif_sas:P_error> <mmcif_sas:R>0.2068</mmcif_sas:R> <mmcif_sas:id>1</mmcif_sas:id> </mmcif_sas:sas_p_of_R> <mmcif_sas:sas_p_of_R ordinal="1010"> <mmcif_sas:P>2.941</mmcif_sas:P> <mmcif_sas:P_error>0.1673</mmcif_sas:P_error> <mmcif_sas:R>10.24</mmcif_sas:R> <mmcif_sas:id>1</mmcif_sas:id> </mmcif_sas:sas_p_of_R> <mmcif_sas:sas_p_of_R ordinal="1011"> <mmcif_sas:P>0.</mmcif_sas:P> <mmcif_sas:P_error>0.</mmcif_sas:P_error> <mmcif_sas:R>10.34</mmcif_sas:R> <mmcif_sas:id>1</mmcif_sas:id> </mmcif_sas:sas_p_of_R> </mmcif_sas:sas_p_of_RCategory> Values of distance distribution function P(R) Errors of P(R) values Values of intramolecular distances R P(R) identifier Ordinal index for the P(R) function Description of the distance distribution function P(R) Example 1 <mmcif_sas:sas_p_of_R_detailsCategory> <mmcif_sas:sas_p_of_R_details id="1"> <mmcif_sas:Rmax>10.2</mmcif_sas:Rmax> <mmcif_sas:Rmin>0</mmcif_sas:Rmin> <mmcif_sas:number_of_points>1096</mmcif_sas:number_of_points> <mmcif_sas:p_of_R_point_max>1100</mmcif_sas:p_of_R_point_max> <mmcif_sas:p_of_R_point_min>5</mmcif_sas:p_of_R_point_min> <mmcif_sas:qmax>4.2</mmcif_sas:qmax> <mmcif_sas:qmin>0.04</mmcif_sas:qmin> <mmcif_sas:result_id>1</mmcif_sas:result_id> <mmcif_sas:software_p_of_R>GNOM 4.6</mmcif_sas:software_p_of_R> </mmcif_sas:sas_p_of_R_details> </mmcif_sas:sas_p_of_R_detailsCategory> Maximal value of intramolecular distances R Minimal value of intramolecular distances R Number of intensity points used in P(R) calculation Number of the last point of intensity used to calculate P(R) Number of the first point of intensity used to calculate P(R) Maximal value of momentum transfer used for calculation of P(R) Minimal value of momentum transfer used for calculation of P(R) A pointer to attribute id in category sas_result Software used for the calculation of P(R) identifier The extrapolated quantities backcalculated from the P(R) using inverse Fourier transformation Example 1 P(R) identifier Extrapolated regularized arized intensity backcalculated from P(R) using inverse Fourier transformation Extrapolated momentum transfer values for calculation of extrapolated intensity Ordinal index for extrapoated value list Ordinal index for the P(R) function Results of small-angle scattering measurement Example 1 <mmcif_sas:sas_resultCategory> <mmcif_sas:sas_result id="1"> <mmcif_sas:Dmax>10.3</mmcif_sas:Dmax> <mmcif_sas:Dmax_error>0.2</mmcif_sas:Dmax_error> <mmcif_sas:Guinier_point_max>23</mmcif_sas:Guinier_point_max> <mmcif_sas:Guinier_point_min>5</mmcif_sas:Guinier_point_min> <mmcif_sas:I0_from_Guinier>10128</mmcif_sas:I0_from_Guinier> <mmcif_sas:I0_from_Guinier_error>184</mmcif_sas:I0_from_Guinier_error> <mmcif_sas:I0_from_PR>10203</mmcif_sas:I0_from_PR> <mmcif_sas:I0_from_PR_error>195</mmcif_sas:I0_from_PR_error> <mmcif_sas:MW_Porod>49</mmcif_sas:MW_Porod> <mmcif_sas:MW_Porod_error>0.3</mmcif_sas:MW_Porod_error> <mmcif_sas:MW_standard>55</mmcif_sas:MW_standard> <mmcif_sas:Porod_volume>82</mmcif_sas:Porod_volume> <mmcif_sas:Porod_volume_error>7</mmcif_sas:Porod_volume_error> <mmcif_sas:Rg_from_Guinier>3.4</mmcif_sas:Rg_from_Guinier> <mmcif_sas:Rg_from_Guinier_error>0.2</mmcif_sas:Rg_from_Guinier_error> <mmcif_sas:Rg_from_PR>3.5</mmcif_sas:Rg_from_PR> <mmcif_sas:Rg_from_PR_error>0.3</mmcif_sas:Rg_from_PR_error> <mmcif_sas:SASBDB_code>SASDA85</mmcif_sas:SASBDB_code> <mmcif_sas:comments>No signs of aggregation</mmcif_sas:comments> <mmcif_sas:estimated_volume>74</mmcif_sas:estimated_volume> <mmcif_sas:estimated_volume_error>5</mmcif_sas:estimated_volume_error> <mmcif_sas:estimated_volume_method>Ab initio model</mmcif_sas:estimated_volume_method> <mmcif_sas:experimental_MW>55</mmcif_sas:experimental_MW> <mmcif_sas:experimental_MW_error>0.1</mmcif_sas:experimental_MW_error> <mmcif_sas:standard>BSA</mmcif_sas:standard> <mmcif_sas:type_of_curve>Merged</mmcif_sas:type_of_curve> </mmcif_sas:sas_result> </mmcif_sas:sas_resultCategory> Maximum dimension of the particle (in nm) Error of Dmax Number of the last point of the guinier region Number of the first point of the guinier region Forward scattering determined with Guinier approximation Error of Guinier approximation forward scattering Forward scattering determined from distance distribution function Error of P(R) forward scattering Molecular weight derived from the Porod volume (in kDa) Error of Porod molecular weight Molecular weight of the sample determined by comparison to the sample forward scattering with that from a standard (in kDa) Porod volume (excluded volume of the hydrated particle) (in nm3) Error of Porod volume Radius of gyration determined with Guinier approximation (in nm) Error of Guinier approximation radius of gyration Radius of gyration determined from distance distribution function (in nm) Error of P(R) radius of gyration Code in the SASBDB Comments on the results Volume estimated from scattering curve using any other method than Porod volume calculation (in nm3) Error of estimated volume Method used to estimate volume Molecular weight of the sample determined by any experimental method (in kDa) Error of experimental molecular weight Units for the I0 items in _sas_result Units for the Rg and Dmax items in _sas_result The volume items have units equal to this unit cubed Name of the substance used as a standard Type of the curve used in analysis Result identifier Gives information about the sample and how it is mounted. The sample is assumed to consist of the specimen to be analysed and a matrix or buffer. Example - Hypothetical example to illustrate the description of a Sample. <mmcif_sas:sas_sampleCategory> <mmcif_sas:sas_sample id="Lysozyme_sample"> <mmcif_sas:details>Chicken egg white lysozyme in solution</mmcif_sas:details> <mmcif_sas:sample_transmission>0.6</mmcif_sas:sample_transmission> <mmcif_sas:specimen_concentration>15</mmcif_sas:specimen_concentration> <mmcif_sas:thickness>0.2</mmcif_sas:thickness> </mmcif_sas:sas_sample> </mmcif_sas:sas_sampleCategory> A pointer to attribute id in category sas_buffer in the Buffer category A description of the calibration used for normalization of the scattering intensity. Black carbon Ionisation chamber Water Standard protein (BSA) Temperature at which the sample measurement were performed (in C) 20.0 Method of concentration determination Nanodrop A description of the sample such as the source of the sample, identification of standards, mixtures, etc. The sample is assumed to consist of a specimen which is actually analysed and a matrix or buffer. The angle between the normal to the planar sample and the incident beam. Dry volume of the sample 53 A pointer to _entity_id (molecule) which the sample contains 1 Extinction coefficient of the sample 43.824 The angle between the fibre direction of the sample and the principal detector axis. In the case of two-dimentsional detectors this is the direction that changes most rapidly in the detector output. The length of the unstressed sample along the direction of stress. Defines the sample position in the _x direction. defines the sample position in the _y direction. defines the sample position in the _z direction. The date of preparation of the sample, i.e., the date when the sample was assembled into a form suitable for measuring small angle scatterng. The date is given in the format yyyy-mm-dd Method of purity determination DLS The transmission factor Ts of the sample calculated or measured as intensity of beam transmitted through the sample ------------------------------------------------ intensity of incident beam The sample is assumed to consist of the specimen that is actually analyzed and a matrix or buffer. defines the shape of the sample. The sample is assumed to consist of a specimen which is actually analysed and a matrix or buffer. fibre disk Unknown Specific volume of the sample 0.724 The sample is assumed to consist of the specimen which is actually analysed and a matrix or buffer. This item gives the concentration of the specimen in the sample. Temperature at which the sample was stored prior to measurement (in C) 10.0 The extension of the stressed sample, divided by the original length (or volume). A description of the stress applied to the sample. uniaxial extension uniaxial compression fibers under dead-loading A description of the sample holder The thickness of the irradiated volume of the sample measured perpendicular to the incident x-ray beam. The value of attribute id in category sas_sample must uniquely identify the sample whose scattered intensity was measured. The sample is assumed to consist of a specimen which is actually analysed and a matrix or buffer. Lists the molecular entities present in each sample, together with properties such as deuteration This example shows two samples with two and three entities respectively <mmcif_sas:sas_sample_entitiesCategory> <mmcif_sas:sas_sample_entities id="1"> <mmcif_sas:concentration>1.2</mmcif_sas:concentration> <mmcif_sas:entity_id>BSA</mmcif_sas:entity_id> <mmcif_sas:sample_id>1</mmcif_sas:sample_id> </mmcif_sas:sas_sample_entities> <mmcif_sas:sas_sample_entities id="2"> <mmcif_sas:concentration>0.7</mmcif_sas:concentration> <mmcif_sas:entity_id>LYZ</mmcif_sas:entity_id> <mmcif_sas:sample_id>1</mmcif_sas:sample_id> </mmcif_sas:sas_sample_entities> <mmcif_sas:sas_sample_entities id="3"> <mmcif_sas:concentration>3.3</mmcif_sas:concentration> <mmcif_sas:entity_id>BSA</mmcif_sas:entity_id> <mmcif_sas:sample_id>2</mmcif_sas:sample_id> </mmcif_sas:sas_sample_entities> <mmcif_sas:sas_sample_entities id="3"> <mmcif_sas:concentration xsi:nil="true" /> <mmcif_sas:entity_id>HGF</mmcif_sas:entity_id> <mmcif_sas:sample_id>2</mmcif_sas:sample_id> </mmcif_sas:sas_sample_entities> <mmcif_sas:sas_sample_entities id="3"> <mmcif_sas:concentration>0.1</mmcif_sas:concentration> <mmcif_sas:entity_id>EPO</mmcif_sas:entity_id> <mmcif_sas:sample_id>2</mmcif_sas:sample_id> </mmcif_sas:sas_sample_entities> </mmcif_sas:sas_sample_entitiesCategory> Concentration of the entity in the sample The highest concentration in a concentration series (for a sas_result derived from merging / extrapolating curves from several concentrations). If this is present then .concentration_range_min should also be present, and .concentration should not be. The lowest concentration in a concentration series (for a sas_result derived from merging / extrapolating curves from several concentrations). If this is present then .concentration_range_max should also be present, and .concentration should not be. Units for attribute concentration, in category sas_sample_entities .concentration_range_max and .concentration_range_min When absent, assume mg/ml Contrast of this entity in this sample Accounting for sample deuteration and for buffer composition 3.047 Percentage of non-exchangeable 2H of the entity (molecule) Identifies the entity Molecular weight of the entity in kDa Adjusted for deuteration if necessary 53.5 Identifies the sample in which the entity is present This data item is the category key and must be unique to each scan reported in the datablock. Describes the properties of the different scans reported in sas_scan_intensity. This example shows how the beam, detector and sample are specified for a each scan. In addition, the nature of the intensities measured during the scan is shown. This example should be read in conjuntion with the example in sas_scan_intensity. No filenames are given for the first three items as the intensities for these scans are found in the current datablock. <mmcif_sas:sas_scanCategory> <mmcif_sas:sas_scan id="1"> <mmcif_sas:beam_id>2007-10-12</mmcif_sas:beam_id> <mmcif_sas:detc_id>2</mmcif_sas:detc_id> <mmcif_sas:filename>sample</mmcif_sas:filename> <mmcif_sas:measurement_date>sample1</mmcif_sas:measurement_date> <mmcif_sas:sample_id>1</mmcif_sas:sample_id> <mmcif_sas:title>1</mmcif_sas:title> <mmcif_sas:type>1</mmcif_sas:type> </mmcif_sas:sas_scan> <mmcif_sas:sas_scan id="matrix"> <mmcif_sas:beam_id>1</mmcif_sas:beam_id> <mmcif_sas:detc_id>background1</mmcif_sas:detc_id> <mmcif_sas:filename>1</mmcif_sas:filename> <mmcif_sas:measurement_date>3</mmcif_sas:measurement_date> <mmcif_sas:sample_id>2007-10-10</mmcif_sas:sample_id> <mmcif_sas:title xsi:nil="true" /> <mmcif_sas:type>2</mmcif_sas:type> </mmcif_sas:sas_scan> <mmcif_sas:sas_scan id="1"> <mmcif_sas:beam_id>c/detector/response.cif</mmcif_sas:beam_id> <mmcif_sas:detc_id>5</mmcif_sas:detc_id> <mmcif_sas:filename>2007-10-15</mmcif_sas:filename> <mmcif_sas:measurement_date>detector</mmcif_sas:measurement_date> <mmcif_sas:sample_id>1</mmcif_sas:sample_id> <mmcif_sas:title xsi:nil="true" /> <mmcif_sas:type>processed1</mmcif_sas:type> </mmcif_sas:sas_scan> <mmcif_sas:sas_scan id="2"> <mmcif_sas:beam_id>processed</mmcif_sas:beam_id> <mmcif_sas:detc_id>c/scan//processed.cif</mmcif_sas:detc_id> <mmcif_sas:measurement_date>1</mmcif_sas:measurement_date> <mmcif_sas:title>1</mmcif_sas:title> </mmcif_sas:sas_scan> </mmcif_sas:sas_scanCategory> This item is a child of attribute id in category sas_beam and identifies the beam configuration used in making the scan. The measured intensity should be multiplied by this factor to get normalized intensity This item is a child of attribute id in category sas_detc and identifies the detector used in recording the scan. Time interval used to accumulate the counts in each of the values included in attribute intensity in category sas_scan_intensity Name of the file in which the scan intensity is stored on the machine where the primary data processing is done Units for the intensity and intensity_su_* columns of the corresponding _sas_scan_intensity category The date on which this scan was made. The format is yyyy-mm-dd Units for the momentum_transfer column of the corresponding _sas_scan_intensity category Number of frames taken during the exposure 50 A pointer to _result_id corresponding to the intensity 1 This item is is a child of attribute id in category sas_sample and identifies the sample used in this scan. Title for this scan. If the type is "processed", the intensity Ip is corrected for background, detector response etc. as follows: Ip = (Is - Im - Ib(Tm-Ts) )/( Id*C*ds*Ts) where Is = the intensity measured with the mounted specimen Im = the intensity measured with the matrix alone Ib = the measured background intensity Id = the detector response (the above four quantities are found in attribute intensity in category sas_scan_intensity depending on the flag given in this item. See the enumeration list for this item.) Ts = transmission coefficient of the specimen = sas_sample.specimen_transmission Tm = transmission coefficient of the matrix = attribute matrix_transmission in category sas_sample C = concentration of the specimen = attribute specimen_concentration in category sas_sample ds = thickness of the sample = attribute thickness in category sas_sample The detector response is the intensity measured by the detector from a uniform scatterer (e.g. a Fe55 radioactive source for X-rays or water for neutrons). This data item is the category key and must be unique to each scan reported in the datablock. This category gives the measured and processed intensities and the corresponding momentum transfers. This example shows the intensity as a function of momentum transfer for the cases given in the sas_scan category example, showing how each of the different scans can be reported in a single file though they can also be reported in different files if so desired <mmcif_sas:sas_scan_intensityCategory> <mmcif_sas:sas_scan_intensity id="transfer"> <mmcif_sas:resolution_width>1</mmcif_sas:resolution_width> </mmcif_sas:sas_scan_intensity> </mmcif_sas:sas_scan_intensityCategory> Number of pixels contributing to the value reported in .intensity. Intensity measured or processed at the given momentum transfer Standard uncertainty determined from the counting statistics of the intensity reported in .intensity Estimated standard uncertainty from sources other than counting statistics. e.g. from radial average, incoherent background etc... Momentum transfer values 4*PI*sin(theta)/lambda in A^-1 Uncertainty in the momentum transfer (e.g. case for scanning instruments) Maximal momentum transfer value 6.5 Minimal momentum transfer value 0.03 Width of the Gaussian resolution function defined by Pedersen et al, (1990) J. Appl. Cryst., 23, 321 This data item is a child of attribute id in category sas_scan. It serves to relate the current intensity measurement with the conditions given for this scan in sas_scan. Units of momentum transfer nanometre This data item is the category key and must have a unique value for each intensity measurement.